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Abstract. A theoretical study of the anomalous decay mode τ → ωπππν is presented. The theoretical
value of the branching ratio of τ− → ωπ−π0π0ν agrees well with the data. The branching ratio of τ− →
ωπ+π−π−ντ is predicted. It is found that the vertices of a1ρπ and ωρπ play a dominant role in these two
decay modes. CVC is satisfied, and there is no adjustable parameter.

There is rich physics in τ hadronic decays. Because of
the value of mτ many light mesons made of u, d, and s
quarks, especially meson resonances, are produced in the
decays. Therefore, τ mesonic decays provide a very unique
test ground of the standard model and QCD. An effective
QCD large NC theory of mesons has been proposed to
study the physics of light mesons [1]. In this theory the
tree diagrams of mesons are at leading order of a large
NC expansion and loop diagrams are at higher orders.
This theory has been applied to study many physical pro-
cesses of mesons and it has been shown that the theory
is phenomenologically successful [1–3]. Both vector and
axial-vector currents contribute to τ decays. The mesonic
vector current is obtained from the vector meson domi-
nance (VMD) which is a natural result of this theory [1].
The axial-vector current of mesons is also obtained [3].
PCAC is satisfied [3]. Many τ mesonic decay modes have
been studied by using this theory [3]. Theory agrees with
the data reasonably well.
The decay rate of τ− → 2π−π+3π0ντ has been mea-

sured by ALEPH [4] and CLEO [5] and predicted by CVC
[6–8]. The first measurement of τ− → ωπ−π0π0ντ has
been reported by CLEO [5]:

B(τ− → ωπ−π0π0ντ ) = (1.89+0.74
−0.67 ± 0.40)× 10−4.

There is another decay mode: τ− → ωπ+π−π−ντ . These
are very interesting decay modes resulting from the vec-
tor current. These decay modes are tests of VMD. The ω
meson is associated with an anomaly. The Wess–Zumino–
Witten anomaly [9] can be tested by these modes. Since
four mesons are produced, many meson vertices are in-
volved in these processes. These decay modes provide tests
on all kinds of meson theory. In the effective theory of large
NC QCD of mesons [1] all the vertices of these decays have
been derived and all the parameters have been fixed. The
large NC theory of mesons [1] will make definite predic-
tions on these two decay modes. Therefore, they provide
serious tests on this theory.

In this paper we apply the effective theory of large
NC QCD [1] to study τ− → ωπ−π0π0ντ and τ− →
ωπ+π−π−ντ . Only a vector current contributes to both
decays, which has been derived [3] and was found to be
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in the vertices involving the ρ meson and g is a universal
coupling constant which is determined to be 0.39 by fitting
ρ → ee+. Equation (1) is exactly the same expression of
VMD as given by Sakurai [10].
The diagrams contributing to the decay τ → ωπππν

are shown in Figs. 1a–f. All the vertices are derived in the
chiral limit. The ωρπ vertex is the Wess–Zumino–Witten
anomaly and is derived to be
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The vertex Lωρπ leads to the Adler–Bell–Jackiw anomaly
of π0 → γγ [1].
Besides the anomalous vertices Lωρπ, there are three

other kinds of normal vertices in Fig. 1. The first kind of
vertices derived in [1] are
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Fig. 1a–f. Feynman diagrams of τ → ωπππν
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q being the momentum of the a1 meson and p the momen-
tum of the ρ meson.
The vertices of La1ρπ and Lρππ have been tested by the

widths of a1 and ρ, pion form factors, and other physical
processes [1–3]. Theory agrees well with the data.
The second kind of normal vertices are contact inter-

actions between two meson fields,
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By inserting these vertices into Figs. 1b,c, related dia-
grams are obtained.
The third kind of vertex is the direct interaction be-

tween ρρππ,
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This is the vertex of Fig. 1a.
Due to the structure of the vertex (1) the amplitudes

of the diagrams Figs. 1e,f satisfy the CVC automatically.
However, for the diagrams of Figs. 1a,b,c,d we have to put
all the three kinds of vertices (4)–(6), (11)–(14) together to
have CVC satisfied in the chiral limit. These vertices have
been exploited to calculate the branching ratios of τ →
ρππν [11]. Theoretical results are in agreement with the
data. It is necessary to emphasize that all the parameters
of this study have been fixed in previous studies. There is
no adjustable parameter in this investigation.
In the diagram of Fig. 1e there are two anomalous ver-

tices Lωρπ. The study [1] shows that the strength of this
vertex is weaker than normal vertices. This is the reason
why the ω meson has a narrower decay width than the ρ
meson. The calculation shows that the contribution of the
diagram of Fig. 1e is negligible. In Fig. 1f there are a ρ res-
onance and ω and π mesons in the final state. Because the
phase space of this process is too small, the contribution
of this diagram is also negligible.
Now we calculate the branching ratios of τ → ωπππν.

This is very lengthy. The amplitudes of the decays τ →
ωπππν are obtained from all the three kinds of vertices
(4)–(6), (11)–(14) and the vertex Lωρπ of (3). In the chiral
limit the matrix elements of the vector current of τ− →
ωπ−π0π0ντ and τ− → ωπ+π−π−ντ have been found to
be
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with pρ being the momentum of the ρ meson, pi (i =
1, 2, 3) the momentum of pion, and p the momentum of ω.
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Equations (15) and (17) show that the CVC, indeed, is
satisfied in the chiral limit. It is interesting to notice that
the resonance factor

−m2
ρ + i

√
q2Γρ(q2)

q2 −m2
ρ + i

√
q2Γρ(q2)

in (15) and (17) is obtained from the combination of the
two terms in (1). These two terms are shown in the two
diagrams of Figs. 1a–f.
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The contributions of the a1 meson (Fig. 1b) to the
functions f and fij (i, j = 1, 2) are given below. The con-
tributions from other diagrams are shown in the appendix.
We have
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The decay width of a1 meson is derived as
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The decay rate of τ → ωπππν is derived from (15)–
(18)
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The branching ratios of the two decay channels are
calculated to be

B(τ− → ωπ−π0π0ντ ) = 2.16× 10−4, (27)
B(τ− → ωπ+π−π−ντ ) = 2.18× 10−4. (28)

The theoretical branching ratio of τ− → ωπ−π0π0ντ is
consistent with the data [5]. The theory predicts that the
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Fig. 2. Distribution function dΓ/dq2 for τ− → ωπ+π−π−ντ
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Fig. 3. Distribution function dΓ/dq2 for τ− → ωπ−π0π0ντ

branching ratio of τ− → ωπ+π−π−ντ is about the same
as that of τ− → ωπ−π0π0ντ .
As shown in Fig. 1, there are many subprocesses in the

decays. However, the calculation shows that the a1 meson
(Fig. 1b) dominates the two decay channels. If only the
subprocess which is obtained from La1ρπ is kept in the
matrix elements (15) and (17), we obtain

B(τ− → ωπ−π0π0ντ ) = 1.86× 10−4, (29)
B(τ− → ωπ−π−π+ντ ) = 1.87× 10−4. (30)

86% of the decay rate comes from La1ρπ. It is necessary
to point out that in Fig. 1b there are terms which violate
CVC. However, these terms are cancelled by the corre-
sponding terms of other diagrams. The results (29) and
(30) are obtained after this cancellation. It is interesting
to notice that the a1 meson is associated with the a1 dom-
inance in the axial-vector current [3].
The distribution functions of the two decay modes,

dΓ/dq2, are calculated and shown in Figs. 2 and 3. There
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is a peak in each distribution, which originates in the com-
bination of the a1 resonance and the kinematics of the
decays.
To conclude, two decay modes of τ → ωπππν have

been studied by an effective large NC application of QCD
to the mesons. CVC is satisfied in the chiral limit. The
theoretical branching ratio of τ− → ωπ−π0π0ντ agrees
with the data. The theory predicts that the branching
ratio of τ− → ωπ+π−π−ντ is about the same as that
of τ− → π−π0π0ντ . In this study there is no adjustable
parameter.
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Appendix

(1) Diagrams involving the vertices (11)–(13).
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(2) Diagrams of Fig. 1c.
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(3) Diagrams of Fig. 1a.
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(4) Diagrams of Fig. 1d.
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